- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Sheridan, Kristin (3)
-
Bathe, Mark (1)
-
Berleant, Joseph (1)
-
Chawla, Shuchi (1)
-
Condon, Anne (1)
-
Garg, Rachit (1)
-
Vassilevska Williams, Virginia (1)
-
Waters, Brent (1)
-
Wu, David J. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study the design of embeddings into Euclidean space with outliers. Given a metric space (X, d) and aninteger k, the goal is to embed all but k points in X (called the “outliers”) into ℓ2 with the smallest possibledistortion c. Finding the optimal distortion c for a given outlier set size k, or alternately the smallest k fora given target distortion c are both NP-hard problems. In fact, it is UGC-hard to approximate k to withina factor smaller than 2 even when the metric sans outliers is isometrically embeddable into ℓ2. We considerbi-criteria approximations. Our main result is a polynomial time algorithm that approximates the outlier setsize to within an O(log2 k) factor and the distortion to within a constant factor.The main technical component in our result is an approach for constructing Lipschitz extensions ofembeddings into Banach spaces (such as ℓp spaces). We consider a stronger version of Lipschitz extensionthat we call a nested composition of embeddings: given a low distortion embedding of a subset S of the metricspace X, our goal is to extend this embedding to all of X such that the distortion over S is preserved, whereasthe distortion over the remaining pairs of points in X is bounded by a function of the size of X \ S. Priorwork on Lipschitz extension considers settings where the size of X is potentially much larger than that of Sand the expansion bounds depend on |S|. In our setting, the set S is nearly all of X and the remaining setX \ S, a.k.a. the outliers, is small. We achieve an expansion bound that is polylogarithmic in |X \ S|.more » « less
-
Berleant, Joseph; Sheridan, Kristin; Condon, Anne; Vassilevska Williams, Virginia; Bathe, Mark (, Discrete Applied Mathematics)
-
Garg, Rachit; Sheridan, Kristin; Waters, Brent; Wu, David J. (, Theory of Cryptography Conference (TCC))
An official website of the United States government

Full Text Available